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. The glomerulus exercises its filtration barrier function by establishing a complex filtration apparatus

. consisting of podocyte foot processes, glomerular basement membrane and endothelial cells.

. Disruption of any component of the glomerular filtration barrier leads to glomerular dysfunction,

. frequently manifested as proteinuria. Ultrastructural studies of the glomerulus by transmission electron

. microscopy (TEM) and conventional scanning electron microscopy (SEM) have been routinely used to
identify and classify various glomerular diseases. Here we report the application of newly developed
helium ion scanning microscopy (HIM) to examine the glomerulopathy in a Col4a3 mutant/Alport
syndrome mouse model. Our study revealed unprecedented details of glomerular abnormalities
in Col4a3 mutants including distorted podocyte cell bodies and disorganized primary processes.
Strikingly, we observed abundant filamentous microprojections arising from podocyte cell bodies

. and processes, and presence of unique bridging processes that connect the primary processes and

. foot processes in Alport mice. Furthermore, we detected an altered glomerular endothelium with

. disrupted sub-endothelial integrity. More importantly, we were able to clearly visualize the complex,

. three-dimensional podocyte and endothelial interface by HIM. Our study demonstrates that HIM

. provides nanometer resolution to uncover and rediscover critical ultrastructural characteristics of the
glomerulopathy in Col4a3 mutant mice.

Ultrafiltration of plasma through a complex glomerular filtration barrier, consisting of podocytes, endothelial
cells and glomerular basement membrane (GBM), represents the most important function of the kidney'?2.
Podocytes are highly specialized cells that serve as major architectural components of the filtration barrier.
. They are composed of a cell body, several primary and secondary processes, and numerous foot processes, that
© protrude from each primary or secondary process’. The slit diaphragm (SD) is a unique, specialized intercel-
. lular adhesion structure formed by interdigitating foot processes from adjacent podocytes*. The SD is a highly
. organized and dynamic structure, that contains a number of proteins including the well-known key SD pro-
: teins CD2-associated protein (CD2AP), nephrin, and podocin, as well as several SD-associated proteins, such as
. atypical protein kinase C (aPKC), Ras GTPase-activating-like protein IQGAP1, membrane-associated guanylate
. kinase inverted 2 (MAGI-2), and zona occuldens-1 (ZO-1)>"'°. Disruption of most SD components leads to glo-
. merulopathy and frequently proteinuria''. In addition, another critical component of the glomerular filtration
: barrier is the GBM. The GBM forms a complex extracellular matrix (ECM) network not only providing mechani-
. cal support to podocytes and endothelial cells but also contributing directly to the permselectivity of the glomer-
ular filtration barrier'?. In addition, the GBM is critical for epithelial cell organization, survival and function®.
The GBM is initially derived from the fusion of the basement membranes of podocytes and endothelial cells.
It consists primarily of type IV collagen a3ci4a5 and laminin a532+1, alongside many other proteins'*'>. In the
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mature kidney, COL4A3, COL4A4, and COL4A5 are expressed by the podocyte and are required for the assembly
of the major type IV collagen network of the GBM. Mutations in COL4A5 cause the X-linked form of Alport
syndrome, a hereditary glomerulonephritis that is associated with hearing and ocular defects'®. Mutations in
COL4A3 and COL4A4 cause the autosomal recessive forms of the disease, as well as thin basement membrane
nephropathy and an FSGS-like pathology'”!®. The pathological characteristics of Alport syndrome in the kidney
include changes from thinning to mixed thinning and thickening and splitting of the GBM, often described as a
‘basket weave’ appearance. More often at the later stage there is a reduction in podocyte number and effacement
of podocyte foot processes'>?. Here we designed a study using a novel microscopy technology to investigate the
complex ultrastructure of the Alport glomerulopathy associated with COL4A3 deficiency'?.

It is well known that the podocytes, GBM and associated endothelium constitute a glomerular filtration appa-
ratus of very complex three-dimensional architecture®. Studying this structure by conventional Scanning Electron
Microscopy (SEM) has provided critical insights into glomerular biology, pathophysiology, and the underlying
mechanisms of kidney diseases*!~?*. For example, Makino et al. visualized gaps in the GBM and red blood cells
passing through these gaps in hematuric animals with a combination of transmission electron microscopy (TEM)
and SEM, thus uncovering the cause of hematuria associated with kidney disease®*. Foot process effacement
detected by TEM and SEM has become a hallmark of proteinuric glomerulopathy/podocytopathy*. Constantly
improving conventional SEM technology has allowed the detection of numerous key ultrastructural features
of the healthy and diseased glomerulus, thus significantly advancing our understanding of glomerular biology,
physiology, and pathophysiology. More recently, through applying block-face scanning electron microscopy and
image reconstruction, the sub-podocyte expansion/invasion into the GBM was revealed in Alport syndrome ani-
mals®. Another study using the same technology uncovered the presence of a “ridge like prominence” formed on
the basal surface of the primary process that attaches to the GBM?”. However, despite these exciting discoveries,
the widely used conventional SEM technology has been greatly limited by the imaging resolution at high magni-
fication due to charging interference caused by the insulating properties of tissues and the loss of subtle surface
features due to heavy metal coating®.

Remarkable progress has been made during this decade in research of glomerular diseases, particularly in
cell and molecular biology. This highlights the need for powerful microscopic technologies required to enable
the detection of sophisticated cellular and/or molecular events, and possibly to characterize molecular anatomic
details of cells and subcellular structures at nanometer resolution scale. However, conventional microscopic
technologies seem to have reached their technical capacity and to no longer be able to fill in knowledge gaps.
Excitingly, the recently developed high resolution Helium Ion scanning Microscopy (HIM) offers unique advan-
tages over conventional SEM through reduced sample charging, minimizing sample damage, and providing better
surface contrast without metal coating®>!. Importantly, it enables an increased depth of field and potentially 5
angstrom imaging resolution. Scanning HIM has recently been used by our group to visualize the ultrastructure
of the kidney from normal rodents with nanometer resolution®. In the current study, we apply this scanning
HIM technique to examine glomerular abnormalities in the collagen type IV a3 chain (Col4a3) deficient mice
that model Alport syndrome. We applied HIM to examine the three-dimensional ultrastructural details of the
glomeruli, focusing on the morphology of the podocyte cell body, primary processes and foot processes, filtra-
tion slits, endothelial surface, as well as the interface between podocyte and endothelium in heterozygous and
homozygous animals.

Results and Discussion

Three-dimensional view of podocytes in Col4a3 mutant mice. 4-5 month old Col4a3—/— (Alport)
mice lacking the collagen a:3a4a5(IV) network and wild-type (WT) and heterozygous (Col4a3+/—) control
mice were used for scanning HIM. Spot urine samples from all animals were collected for analysis of proteinuria
by SDS-PAGE. Coomassie blue staining detected the presence of significant amounts of albumin in urine samples
from homozygous Col4a3—/— mice, but not from Col4a3+/— mice (Fig. 1b, Figure S1). H&E staining of kidney
sections revealed that there were no obvious abnormalities of the glomerular structure in the Col4a3+/— animals
compared to WT controls (Fig. 1a). In the Col4a3—/— mice, about 10% of glomeruli appeared sclerosed, and
the remaining glomeruli appeared grossly intact. These animals also had increased ECM deposition and cellular
components in the interstitium. These results are consistent with a previous report on these mice®.

By low magnification HIM examination, the WT glomeruli appeared well organized with the podocyte cell
body sitting above the capillary loops. Multiple thick primary/major foot processes projected from the podo-
cyte cell body and covered the underlying glomerular capillaries. The primary processes were frequently found
crossing over each other and under the podocyte cell body forming a complex network. Arising from the major
processes were numerous smaller, uniformly shaped foot processes oriented in a fern like pattern (Fig. 2a-i,iv,vii).
Foot processes from adjacent podocytes interdigitated to form filtration pores that completely cover the under-
lying capillaries. We also observed the sporadic appearance of rounded and filamentous microprojections on
the free surface of the podocyte cell body and major processes in WT kidneys. HIM revealed that the surface
of the Col4a3—/— and Col4a3+/— podocytes was less regular and less smooth compared to WT podocytes
branched more randomly than in WT kidneys.

We compared scanning HIM with TEM. By TEM, WT glomeruli showed an intact GBM with a discrete
layered structure, and well organized foot processes lined up around the capillary loop. All foot processes were
regularly spaced and attached to the GBM. A fine diaphragm structure between interdigitating foot processes
was clearly visible (Fig. 2b-i). In the Col4a3—/— glomeruli, in some parts of the glomerulus the GBM was irreg-
ularly thickened, lamellated and protruding out towards the basal surface of the podocytes (Fig. 2b-iii). This
GBM abnormality was interspersed with areas of normal appearing GBM. Similarly, some podocytes appeared

SCIENTIFICREPORTS |7: 11696 | DOI:10.1038/s41598-017-12064-5 2


http://S1

www.nature.com/scientificreports/

Figure 1. Analysis of proteinuria and kidney histology. (a) Representative images of H&E staining of WT,
Col4a3+/—, and Col4a3—/— kidney sections. Glomeruli in wild-type (WT) and Col4a3+/— kidneys have a
normal appearance. The right upper panel shows several sclerosed glomeruli (arrows) along the surface of a
cortical lesion and interstitial injury in a Col4a3—/— kidney. Scale bars, 50 um in upper panels; 10 pum in lower
panels. (b) Coomassie blue staining reveals a strong albumin band in spot urines collected from Col4a3—/—
mice but not from the WT and Col4a3+/— mice.

ultrastructurally normal while others had widened foot processes, and SDs disappeared between interdigitating
foot processes (Fig. 2b-iii).

One very striking morphological feature of the Col4a3—/— glomeruli imaged by HIM was the presence of
numerous long filamentous microprojections. These projections were so abundant that they formed a “hairy web”
covering the entire glomerulus (Fig. 2a-iii,vi). Also of note was the appearance of numerous “blebs” projecting out
of the epithelial surface in between podocyte cell bodies (Fig. 2a-ix). Filamentous projections were also observed
in Col4a3+-/— mice despite those animals lacking proteinuria and having grossly normal kidneys by H&E stain-
ing (Fig. 2a-v,viii). Increased microprojections were also observed by TEM in Col4a3+/— and Col4a3—/— glo-
podocyte processes and abundant distribution of microprojections in Col4a3 mutant kidneys. These increased fil-
amentous microprojections were only observed in the Col4a3 mutant kidney, and not in another glomerulopathy
model of Cd2ap-knockout mice (Fig. 2c), which is a genetic model known to cause podocyte injury™*, suggesting
that the “hairy web” structure with numerous microprojections is likely to be unique to Col4a3+/— mice. The
increased abundance of the filamentous and bleb-like (round shaped) projections in Col4a3 mutant glomeruli
might indicate an increased cellular response of podocytes to signals and/or injury induced by the GBM defect.
Indeed, the presence of microprojections was previously observed in the context of cell differentiation®, aging,
and disease states such as nephrotic syndrome®*¢ by TEM and conventional SEM. However, their abundance and
the clarity of their structure have never been appreciated to the degree shown here by HIM. The biological and
pathological implications of these microprojections remain to be elucidated.

Foot processes and filtration slits in Col4a3 mutant glomeruli. HIM enables direct visualization
of foot processes and filtration slits with unsurpassed resolution. The foot processes of WT and Col4a3+/— ani-
mals were mostly of uniform size and well organized (Fig. 3a-i,ii). They appeared wider in Col4a3—/— mice
(Fig. 3a-iii), which is consistent with our observations by TEM. We detected a slight but significant decrease in
the number of foot processes per length of GBM in Col4a3—/— mice, which is consistent with the occurrence of
foot process effacement in these animals as shown by TEM (Fig. 3,c and d).

Despite the difficulties in visualizing filtration slits in Col4a3—/— glomeruli due to the deeply located foot
processes and the presence of many overlaying “bridging” processes above the foot processes, we found that the
significant difference in SD pore area measured in HIM images between WT and Col4a34-/— mice (Fig. 3b). It
was difficult to measure the SD pore area in Col4a3—/— mice due to the deeply located foot processes (Fig. 3a-iii).
Overall, based on data from both HIM and TEM, the filtration slit does not seem to be significantly altered in
Col4a3—/— mice, suggesting that the GBM composition is unlikely to directly modify the filtration SD structure.
This is consistent with a previous report that laminin 32 deficiency results in proteinuria without a significant
alteration of SD structure!®. Our data are also consistent with a recent study in Alport syndrome animals using
serial block-face scanning electron microscopy?.

Bridging processes in Col4a3 mutant glomeruli. Another interesting observation was the presence of
numerous tall and arched processes projecting from the primary processes in Col4a3—/— glomeruli (Fig. 4a).
In the Col4a3—/— glomeruli, the primary processes gave rise to many “intermediate” processes rather than foot
processes. These intermediate processes intercrossed with each other and formed “bridges” between primary
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Figure 2. Glomerular and podocyte morphology in wild-type and Col4a3 mutant mice. (a) HIM images

of glomeruli in wild-type (WT) (i,iv,vii), Col4a3+/— (ii,v,viii), and Col4a3—/— mice (iii,vi,ix). Low
magnification image of WT kidney (i) shows the glomeruli formed of capillary loops covered with podocytes
while images of Col4a3+/— (ii) and Col4a3—/— kidneys (iii) show a less regular and less smooth surface

of podocytes. High magnification images of WT kidneys (iv,vii) show multiple thick primary or major foot
processes projecting from the podocyte cell body and covering the capillary loops. The primary processes
frequently cross over each other, and numerous uniformly shaped underlying foot processes arise from the
primary processes forming an interdigitated network. There are rounded and filamentous microprojections
on the free surface of the podocyte cell body and primary processes (vii). The primary processes are flattened,
broader and less organized, and the foot processes more randomly branched in Col4a3—/— kidneys (vi)
compared to WT. An increased number of longer microprojections, arising from primary processes and foot
processes, was detectable in Col4a3+/— (v,viii) and Col4a3—/— kidneys (vi,ix). Numerous “blebs” projecting
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out of the epithelial surface between podocyte cell bodies could be observed (ix). Scale bars, 5um in upper
panels; 1 um in middle panels and lower panels. (b) Representative TEM images of WT (i), Col4a3+/— (ii),

and Col4a3—/— glomeruli (iii). WT glomeruli (i) show normal GBM thickness and regularly lined-up foot
processes. Col4a3—/— glomeruli (iii) show irregularly thickened and lamellated GBM. Some podocytes

have widened foot processes and SDs disappear between interdigitating foot processes. Increased microvilli
formations are detectable. Scale bars, 2 pm. MP, major process; Podo, podocyte; Endo, endocapillary space. (c)
Microprojections in Col4a3 and Cd2ap knockout (ko) mice. HIM images of glomeruli in Col4a3—/— (left panel,
copied from Fig. 2a-vi, for comparison) and Cd2ap-ko mice (right panel). While an increased number of longer
microprojections arise from primary processes and foot processes in Col4a3—/— kidneys, they are less obvious
in Cd2ap-ko kidneys. Scale bars, 500 nm.

and foot processes (Fig. 4b). These “bridging” processes did not appear to attach directly to the GBM but rather
to overlying foot processes. The bridging processes seemingly gave rise to foot processes that attached to the
GBM (Fig. 4a). We have observed previously that the height of podocyte foot processes measured by TEM in
Col4a3—/— kidney was significantly larger than that in WT kidney (Fig. 4c). This is probably due to the forma-
tion of the arched bridging processes. Indeed, a careful examination revealed that bridge-like processes were
present in over 7% of foot processes in Col4a3—/— mice (39 foot processes with bridge shape out of 550 foot
processes) compared to only 0.8% seen in WT animals (2 foot processes with bridge shape out of 250 foot pro-
cesses) by TEM. We also noticed an increased presence of the “bridging processes” in Col4a3+/— glomeruli (12
foot processes with bridge shape out of 605 foot processes). The pseudo-colored picture was created to allow
for the easier visualization of complex structural details in Col4a3—/— glomeruli (Fig. 4d, right panel), and it
revealed more branching of podocyte processes from major processes compared to WT control (Fig. 4d, left
panel). Furthermore, the width of branches derived from the major processes is larger in Col4a3—/— podocytes
compared to WT podocytes (Fig. 4d). Quantitative analysis revealed that the width of the first branches coming
out of the major processes was dramatically increased (Fig. 4e), and moreover there are multiple small branches
coming out of the major processes in a step wise manner in Col4a3—/— glomeruli compared to WT (Fig. 4d).

We then examined other glomerulopathy models, Cd2ap-knockout mice and lipopolysaccharide (LPS) treated
mice, an acquired model of podocyte injury?, for the presence of the bridging process seen in the Col4a3—/—
mouse (Fig. 4b). We observed diffuse foot process effacement and flattened foot processes in Cd2ap-knockout
and LPS treated glomeruli. None of them had bridging processes (Fig. 4f). We have not found a description
of similar “bridging processes” in the literature either. There was a recent report of “ridge-like prominences”
observed by block-face scanning electron microscopy?’. These “ridge-like prominences” project from the basal
side of the podocyte cell body and major processes, and are closely attached to the GBM along the foot processes.
Functionally, they were proposed to provide additional adhesion to the GBM?¥. The bridging processes that we
observed are not attached to the GBM and therefore are likely not the same entity as the “ridge-like prominences’.
The ultrastructural abnormalities we described above are seen in nearly 90% of glomeruli in Col4a3—/— mice at
the age of 4-5 months. In the approximately 10% glomeruli that are severely sclerosed, this described pathology
was no longer detectable.

The functional significance of the “bridging processes” we observed is unknown. We hypothesize that these
processes may be a compensatory mechanism to increase the branching of foot processes, thereby enhancing the
overall adhesion of the foot processes to the GBM, or a pathological outcome resulting from a GBM defect due
to the lack of COL4A3. This bridging process was not observed in podocytes from other glomerulopathy models,
implicating that it is a unique feature of the Col4a3 mutant glomeruli.

It is well known that defects in COL4A3, COL4A4 or COL4AS5 disrupt the assembly of type IV collagen
a304ab heterotrimer, inducing instead the formation of the alal a2 heterotrimer complex in the Alport syn-
drome glomeruli®®. It was reported that collagen a1 and o2 chains have fewer cysteines, and hence cross-link at a
lesser extent within and between the heterotrimers**’. Recent analysis revealed that type IV collagen is normally
located in the center of the GBM and, as such, is too remote from the podocyte to mediate the integrin-ECM
interaction. However, the alala2 collagen is mislocalized in Alport syndrome and becomes adjacent to podo-
cytes*!, and, therefore, alters the cell-ECM interaction via integrin-mediated signaling. Replacement of normal
type IV collagen with a.l el o2 heterotrimers results in ectopic overexpression of laminins a1 and o5 and disrupts
the GBM architecture®. A growing body of evidence reveals a complex interplay between podocyte, endothelium,
GBM and integrins in glomerular physiology and pathophysiology*>~**. The podocyte senses the altered compo-
sition of collagen type IV and/or laminins through the 231 integrin receptor®. Alteration of integrin signaling
is well known to affect its downstream targets such as the integrin-linked kinase (ILK) and small Rho GTPases
including RhoA and Racl, and results in reorganization of microtubules and actin cytoskeleton network***%, For
example, a recent study by Dr. Reiser’s group has revealed an essential role of the soluble urokinase-type plas-
minogen activator receptor (suPAR) in the pathogenesis of focal segmental glomerulosclerosis (FSGS)*’. Upon
binding to avp33 integrin, suPAR activates the integrin downstream effector, small GTPase Racl, thus resulting
in foot process effacement and proteinuria via rearrangement of microtubules and actin cytoskeleton network®.
The podocyte foot processes are enriched with actin and myosin, and the podocyte primary processes contain
an important population of microtubules and microfilaments, both subjected to remodeling in response to the
ECM-integrin signaling. In addition to small GTPases, the large GTPase dynamin has recently been shown to
regulate the actin cytoskeleton in podocytes®. The small molecule Bis-T-23, which promotes actin-dependent
dynamin oligomerization, ameliorates proteinuria in multiple kidney disease animal models!. Whether the
newly uncovered bridging processes are subjected to dynamic regulation of microtubule and microfilament rear-
rangement by ECM-integrin signaling, and small or large GTPases, remains to be elucidated.
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Figure 3. Foot processes and filtration slits in wild-type and Col4a3 mutant mice. (a) HIM images of
glomerular filtration slits in wild-type (WT) (i), Col4a3+/— (ii), and Col4a3—/— mice (iii). The WT kidney
image (i) shows filtration regions between foot processes. The image of the foot processes in Col4a3+/— kidney
(ii) shows a similar pattern to WT. In the Col4a3—/— kidney (iii), the slit pores are difficult to visualize due to
the depth of the foot processes. Scale bar, 100 nm. (b) The size of the SD pores measured from HIM images in
WT (n=78) and Col4a3+/— (n=24) mice shows no significant difference as assessed by Student’s ¢-test. Values
are presented as means = standard error of the mean (SEM) here and in the following plots. (c) Representative
TEM images of WT, Col4a3+/—, and Col4a3—/— glomeruli. WT and Col4a3+/— glomeruli show normal GBM
and associated foot processes. In Col4a3—/— glomeruli, the GBM was irregularly thickened and lamellated
(arrow). Scale bar, 500 nm. Podo, podocyte; Endo, endocapillary space. (d) The number of foot process (FP) per
unit GBM length (pm) is significantly lower in Col4a3+/— (n=7) and Col4a3—/— (n=6) compared to WT
(n=3) (**p <0.01 by Student’s t-test). Each analysis includes approximately 10 um GBM length.
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Figure 4. Increased bridging processes in Col4a3—/— glomeruli. (a) Representative image of Col4a3—/—
glomeruli shows primary processes giving rise to many “intermediate” processes with more branching
formations. These intermediate processes intercross with each other and form “bridge”-like structures between
primary and foot processes. Scale bar, 500 nm. (b) Representative image of foot processes of Col4a3—/—
glomeruli in TEM. Arrow indicates a bridging foot process. (¢) The foot process (FP) height is significantly
increased in Col4a3—/— mice (n=108) compared to wild-type (WT) mice (n=114) (**p < 0.01 by Student’s
t-test). (d) HIM images of podocyte processes in wild-type (WT) (left panel) and Col4a3—/— (right panel)
mice. White arrows represent the width of main branch from major processes. Pseudo-colored picture was
obtained by processing Fig. 4a in Adobe Photoshop (right panel). The pseudo green color represents podocyte
major process and foot processes from a podocyte, and the pseudo red color represents podocyte major process
and foot processes from another podocyte. Pseudo purple color represents microprojections originating from
podocytes. MP, major processes; P1, main branch from MP; P2, second branch; P3, third branch. Scale bars,
200nm. (e) The width of main branch from podocyte major processes is significantly increased in Col4a3—/—
(n=18) compared to WT (n=23) glomeruli (***p < 0.001 by Student’s t-test). (f) Representative TEM

images of processes in Col4a3—/— (left panel, copied from Fig. 4b, for comparison), Cd2ap-knockout (ko) and
lipopolysaccharide (LPS) treated mice (right panel). While bridging processes are observed in Col4a3—/—
glomeruli, diffuse foot process effacement and flattened foot processes are detected without bridging processes
in Cd2ap-ko and LPS-treated glomeruli. Scale bars, 200 nm.

Podocyte ultrastructure at late stages of disease in Col4a3 mutant mice. In the late stage glomer-
uli in Col4a3—/— mice, HIM revealed that the distinction between primary and foot process morphology as seen
in the WT animals (Fig. 5a) was lost and was replaced by broadly effaced podocyte processes that formed large
and flattened sheets covering capillaries below. Some of the “sheets” crossed over each other (Fig. 5b-e). In some
regions they were connected by junctional structures (arrows in Fig. 5,d and e). We did not observe complete
detachment or denudation of podocytes from the GBM, which could account for the presence of proteinuria in
non-terminally sclerosed kidney. However, from time to time, we did observe the presence of a few breaks/holes
and gaps between podocytes, and fragmentation of podocyte sheets (arrow in Fig. 5f). It is unclear whether these
holes and gaps and sheet fragmentation are intrinsically formed due to mechanical defects, or generated during
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1

Figure 5. Podocyte ultrastructure at late stage in Col4a3 mutant mice compared with wild-type mice. Shown
are HIM images of podocytes at late stage in wild-type (WT) (a) and Col4a3—/— mice (b-f). (a) WT podocytes
show intact podocyte structure with major processes and foot processes forming interdigitated structures. Late
stage Col4a3—/— podocytes show broadly effaced podocyte processes that form large flattened sheets covering
capillary walls (b,c). In some regions, podocytes appear connected by junctional structures (arrows) (d,e). In
other regions, the presence of a few breaks/holes and gaps between podocytes is detected (white arrow) (f). A
mesh structure appearing as degraded endothelial fenestrae is visible in the gap. Scale bars, (a,b,d) 1 um; (c)

500 nm; (e,f) 200 nm. Podo, podocyte.

the sample preparation process. However, they have not been observed in WT kidneys subjected to the same
procedure.

Alteration of endothelium and podocyte and endothelial interface in Col4a3 mutant glo-
meruli. Whether the GBM defect affects endothelial structure cannot be determined by conventional SEM,
although evidence obtained by TEM suggests it in rodents and patients with glomerulopathy®*->*. Remarkably,
HIM allows the endothelial surface to be directly and clearly visualized (Figs 6 and 7). In WT mice, the endothe-
lial surface was smooth, and the endothelial fenestrae were regular and well organized (Fig. 6a). Underlying the
endothelial fenestrae was likely the endothelial aspect of the GBM. It formed a smooth membranous sheet under-
neath the fenestrae (asterisk in Fig. 6a). Equally well visualized was the endothelial surface in Col4a3+/— mice
that appeared without gross defects (Fig. 6a). However, in Col4a3—/— mice, we detected a seemingly thickened
endothelium with irregularly shaped and sized endothelial fenestrae (Fig. 6a). Strikingly, many of the endothelial
fenestrae lost the underlying supporting structure. In some endothelial fenestrae, some deep “holes” underneath
were clearly seen suggesting a disruption of the underlying GBM (white arrows in Fig. 6a). A significant reduc-
tion of the size of endothelial fenestrae in Col4a3—/— glomeruli was confirmed by quantitative analysis of HIM
images (Fig. 6b). Taken together, our data suggest the presence of endothelial defects in the Col4a3—/— glomer-
uli. Since we observed this endothelial alteration more commonly in the glomeruli at the more advanced disease
state, this is likely a feature of the late stage.

A transverse view of the interface between podocytes and endothelium could also be obtained by HIM
(Fig. 7a). In the WT glomerulus, well-organized foot processes separated by the filtration SD were lined up along
the capillary wall (Fig. 7a). Similarly well-organized foot processes were observed in Col4a3+/— mice (Fig. 7a).
Conversely, in Col4a3—/— glomeruli, foot processes largely disappeared, becoming effaced and forming flat
sheets covering the GBM (Fig. 7a). The previously observed “bridging” process structures were seen underneath
the podocyte cell body and arching over the GBM. Again, they did not seem attached to the GBM (Fig. 7a).
Interestingly, according to the transverse view, the bridging processes and flattened podocyte cell body arched
over some effaced foot processes (Fig. 7a). Thus, they created a false “cyst-like structure” that is reminiscent of the
“intra-podocyte cysts/vacuoles” that were frequently seen by cross-sectioned TEM>*-*". Therefore, the previously
reported intra-podocyte cysts seen by two-dimensional TEM in many glomerulopathies may well be formed
by the very complex crossing over of 3D structures as revealed by HIM. However, what was clearly seen was the
presence of many “holes” and loss of underlying membranous structure of the fenestrae (Fig. 7b), suggesting
disrupted GBM underneath the endothelium.
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Figure 6. Endothelium in wild-type and Col4a3 mutant mice. (a) HIM images of glomerular filtration slits

in wild-type (WT), Col4a3+/—, and Col4a3—/— mice. The image of WT endothelium shows a smooth
endothelial surface and endothelial fenestrae of regular size. Underlying the endothelial fenestrae, a diaphragm
like structure is detectable (*). The image of Col4a3+/— endothelium shows a similar pattern to WT. The
Col4a3—/— endothelium shows irregular sizes of endothelial fenestrae and disappearance of the diaphragm-like
structure underneath the fenestrae (white arrows). Scale bars, 100 nm. (b) The diameter of endothelial fenestrae
is significantly decreased in Col4a3—/— (n=46) mice but not in Col4a3+/— (n=41) mice compared to WT
(n=43) (**p <0.01 by Student’s ¢-test).

Recent three-dimensional block-face SEM has revealed the presence of podocyte invasion into the GBM in
Alport nephropathy models and suggested the interaction between podocyte structures and the GBM?°. We ana-
lyzed 4-5 month old Col4a3—/— mice. Through directly visualizing their surface structure, we were unable to
conclude whether podocytes actively invade the GBM in Alport glomerulopathy or not. We did not detect signs
of active migration of podocytes in Col4a3—/— mice either. More comprehensive HIM incorporating microstruc-
turing technology to remove the superficial layers of material and to access deeper structures might be suited for
such a study.

In conclusion, we have shown that HIM allows the direct visualization of three-dimensional glomerular
ultrastructure in a clinically relevant model of glomerulopathy at nanometer resolution. This technology ena-
bles a much more comprehensive and detailed characterization of glomerular architecture, including podocytes,
endothelium and the interface between them. This opens up a timely opportunity to uncover and rediscover
anatomic features of various glomerulopathies for disease diagnosis, differentiation and more importantly, for
the understanding of the specific cellular and molecular processes associated with sophisticated morphological
features of various glomerulopathies.

Materials and Methods

Animal experiments.  All animal experiments were conducted according to the National Institutes of Health
Guide for the Care and Use of Laboratory Animals and were approved by the Washington Univ. Animal Studies
Committee and the Massachusetts General Hospital Institutional Committee on Research Animal Care. Adult
C57BL/6] Col4a3 knockout mice (Col4a3—/— and Col4a3+/—) and Cd2ap-knockout mice were previously
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Figure 7. Interface between podocyte and endothelium in wild-type and Col4a3 mutant mice. (a) HIM images
of the interface between podocytes and endothelium in WT, Col4a3+/—, and Col4a3—/— mice. The WT image
shows well organized foot processes lining the capillary loops. A similar pattern is seen in Col4a3+/— mice.

In Col4a3—/— mice, foot processes appear effaced and form flat sheets covering the GBM. “Bridging” process
structures are detectable underneath the podocyte cell body. Scale bars, 500 nm. (b) Transverse image of the
interface between podocytes and endothelium in Col4a3—/— kidney shows largely effaced foot processes and
bridging process structures. The bridging processes and flattened podocyte cell body arched over effaced foot
processes are indicated by a black arrow. The disappearance or fragmentation of the diaphragm-like structure
underneath the fenestrae is indicated by a white arrow. Scale bar, 100 nm.

described?**"8. Adult male WT mice (C57BL/6]) were used for the lipopolysaccharide (LPS) injection experi-
ments. LPS was purchased from Sigma-Aldrich (St. Louis, MO). WT mice were subjected to a single injection of
LPS at a dose of 200 ug intraperitoneally, then sacrificed 24 hours after the LPS injection. Adult male C57BL/6]
mice were used as WT controls. All mice had free access to tap water and standard mouse chow. Mice were
anesthetized with pentobarbital sodium (60 mg/kg body weight intraperitoneal injection, Nembutal, Abbott
Laboratories, Abbott Park, IL) and perfused through the left cardiac ventricle at the rate of 10-15 ml/min with
phosphate-buffered saline (PBS, 0.9% NaCl in 10 mM phosphate buffer, pH 7.4) for 5 min, followed by modified
paraformaldehyde-lysine-periodate (PLP) fixative containing paraformaldehyde (4%), lysine (75 mM), sodium
periodate (10mM) and sucrose (150 mM) in 37.5mM sodium phosphate at the same rate for 5min?. Spot urine
was collected for analysis of proteinuria at the time of sacrifice. For hematoxylin and eosin (H&E) staining, tissues
were post-fixed overnight at 4 °C in modified PLP. For TEM and HIM analysis, we post-fixed the tissues overnight
in 2% glutaraldehyde (GA) in 0.1 M sodium cacodylate buffer, pH 7.4 (Electron Microscopy Sciences, Hatfield,
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PA). Tissues were then washed with PBS and stored at 4 °C in PBS containing 0.02% NaNj until processing for the
critical point drying process.

Alcohol replacement and critical point drying (CPD).  Thin (~500 pm) kidney slices were exposed to a
series of graded methanol solutions with the following schedule and methanol dilutions: 25% in PBS for 60 min,
40% in PBS for 45 min, 60% in ddH,O for 45 min, 80% in ddH,O for 45 min, all at room temperature, followed
by 80% in ddH,O overnight at 4°C, and then 100% at room temperature for 60 min®. For each incubation per-
formed at room temperature, the methanol solution was refreshed halfway through its duration. The kidney slices
were then placed in metal baskets and CPD was performed using a Samdri-795 apparatus (Tousimis Research
Corporation, Rockville, MD) as described previously*. Tissues were maintained at supercritical parameter values
(>1000 psi, >42°C) for 4-5min. and the pressure was subsequently reduced slowly (at a rate of <100 psi/min).

Helium ion microscopy. Helium ion microscopy (HIM) was performed using an Orion helium ion micro-
scope (Carl Zeiss Microscopy, Peabody, MA) as previously described?®* at a 35keV beam energy with a probe
current ranging from 0.1 to 1.5 pA. No conductive sample coating was performed prior to imaging. Charge con-
trol was achieved with a low energy electron flood gun. Only brightness and contrast adjustments were applied as
post-processing procedures in Adobe Photoshop version 9.0.2 software (Adobe Systems, San Jose, CA).

H&E staining and urinalysis. Fixed kidney tissues were paraffin-embedded and sectioned. 5-pum thick
sections were then processed for H&E staining. For proteinuria analysis, 2 pl spot urine samples from each mouse
were mixed with SDS-sample loading buffer and then underwent 10% SDS-PAGE. The gels were stained with
Coomassie blue for 1 hour and washed with ddH,O for 1 hour. Bovine serum albumin (Santa Cruz Biotechnology,
Dallas, TX) was run as a control.

Transmission electron microscopy. Fixed kidney tissues were post-fixed in 1% osmium tetroxide in caco-
dylate buffer for 1 hour at room temperature, and then subjected to dehydration through a graded series of eth-
anol solutions up to 100%. Subsequently, they were infiltrated with Epon resin (Ted Pella, Redding, CA) ina 1:1
solution of Epon and 100% ethanol overnight on a rotator and then embedded in fresh Epon at 60 °C overnight.
Using an EM UC?7 ultramicrotome (Leica Microsystems, Bannockburn, IL), tissues were cut into thin sections,
and then collected onto formvar-coated grids and stained with uranyl acetate and lead citrate. Sections were
examined in a JEM 1011 transmission electron microscope (JEOL, Peabody, MA) at 80 kV. Images were taken by
an AMT digital imaging system (Advanced Microscopy Techniques, Danvers, MA)®.

Statistical analysis. Statistical analysis was performed according to the Handbook of Biological Statistics by
Dr. John H. McDonald, Univ. of Delaware (http://www.biostathandbook.com/index.htm). The difference between
individual groups was assessed by Student’s t-test, with significance set at a P value < 0.05. Data is expressed as
mean =+ standard error of the mean (SEM). Error bars represent SEM in each graph.
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